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Abstract
By using x-ray diffraction, magnetization and Mössbauer spectroscopy techniques we have
studied the magnetoelectric Al2−x FexO3 (x = 0.8, 0.9 and 1.0) compound. Ac-susceptibility
and magnetization measurements revealed magnetic transitions at TN = 180, 210 and 260 K for
x = 0.8, 0.9 and 1.0 respectively, that can be attributed to the Néel temperatures of
ferrimagnetic to paramagnetic phase transition for all samples. Mössbauer spectra for the three
samples were recorded between 4.2 and 295 K. Above the Néel temperature the paramagnetic
spectra can be analyzed by three quadrupole doublets associated with the octahedral Fe1, Fe2
and Fe4 sites. The values of the hyperfine parameters show that iron ions are in the high spin
Fe3+ state. The spectrum area of the doublet with larger quadrupole splitting increases with x ,
and in combination with x-ray diffraction results it can be attributed to the iron which occupies
the Fe4 site. Below TN(x) the Mössbauer spectra are magnetically split and at T = 4.2 K
consist of six broad lines, indicating either a hyperfine magnetic field distribution (P(Hhyp)) or
that the three octahedral sites give three unresolved sextets. The most probable value of Hhyp

(the maximum value of P(Hhyp)) follows a power law indicative of a second order transition, in
agreement with ac-susceptibility and magnetization measurements. The width of P(Hhyp)

increases drastically toward low hyperfine magnetic fields as temperature increases. In addition,
an appreciable percentage of the iron nuclei sense a hyperfine field with values in the interval
[0, Hmax]. This behavior can be explained by assuming that several magnetic sites with different
superexchange parameters exist.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerous studies in antiferromagnetic/ferromagnetic and fer-
roelectric materials show that magnetism and ferroelectricity
are two antagonistic properties [1, 2]. A plausible explanation
has been given recently [2, 3] based on the Hund’s rule,
where in an open 3d shell the spins have the tendency to be
parallel. This mechanism is opposite to the strong covalent
bonding needed for ferroelectricity. Magnetoelectricity can
phenomenologically be described [4] with the help of the ad-
ditional term �m−e = − ∑

i j αik Ei Hk , in the thermodynamic
potential, describing the magnetic and electric energy of the
crystal. Here αi j is the magnetoelectric tensor, E and H
the electric and magnetic fields. Magnetoelectric compounds
are very rare since special requirements are necessary. In
order for magnetoelectric tensors to have non-zero values,
the inversion center should be combined with the operator
which reverses all currents (I R) [4]. In these materials

magnetic and electric properties are coupled so that (i) for
H = 0 the magnetic moment responds to an applied electric
field (Mk = αik Ei ) and (ii) for E = 0 the electric
polarization can change with a magnetic field (Pi = αik Hk)
as well. Although several studies exist from the early 1960s,
the exact microscopic explanation of the magnetoelectric
effect still has not been achieved, also corroborated from
the rare existence of magnetoelectric compounds. One of
them, known from the 1960s, with high anisotropic magnetic
properties, is the orthorhombic form of the mixed Al2−x FexO3

compound. Solid state reaction of α-Fe2O3 and α-Al2O3 in
air produces solid solution compounds α-Al2−xFex O3 with
rhombohedral structure. If the reaction of samples with
nominal stoichiometry Al2−xFex O3, (0.6 � x � 1.35) takes
place at high temperature under pure oxygen atmosphere,
then the reaction product is a compound with orthorhombic
structure, which is piezoelectric and ferrimagnetic. This
compound was discovered by Richardson et al [5] when they
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heated a mixture consisting of Fe2O3 and Al2O3 in oxygen
at 1400 ◦C.

Figure 1 shows the crystal structure of the orthorhombic
AlFeO3 compound. In an ideal situation it can be considered
as a layered structure consisting of three cation layers stacked
along the c-axis. The first layer is occupied by regular AlO3

tetrahedra, the second by distorted FeO6 octahedra and the
third by distorted FeO6 and AlO6 octahedra. Al2−x Fex O3 and
its isostructural Ga2−x Fex O3 compound attracted considerable
research interest in the 1960s [6–20]. Nowadays the
research interest for the magnetoelectric compounds has been
rekindled [2, 21–24], mainly due to the report of Kimura
et al [25] on the existence of the magnetoelectric effect
in the frustrated-spin TbMnO3 compound. In the case
of manganites (e.g. TbMnO3) the magnetoelectric effect is
believed to emanate from ‘strong bond anisotropy between
neighboring ions, induced by orbital ordering. An applied
magnetic field modifies the magnetic structure by reducing the
exchange energy. In order for the system to compensate for
this energy change a lattice distortion is induced which in turn
induces electric polarization’ [22].

In the present paper we report on crystal and magnetic
properties of polycrystalline Al2−x Fex O3 (x = 0.8, 0.9
and 1) samples using x-ray diffraction, magnetization,
ac-susceptibility and Mössbauer measurements. Rietveld
refinements showed that the majority of the samples consisted
of orthorhombic form, with cell constant increasing with iron
content. No structural anomaly is detected on cooling through
the Néel temperature, indicating that the magnetic transition
is not related to the ferroelectricity, which is an endogenous
property related to the non-centrosymmetric crystal structure.
The magnetization and ac-susceptibility measurements can be
interpreted supposing that the Al2−xFex O3 compound is a
ferrimagnet with strong uniaxial anisotropy. The Mössbauer
spectra show that iron occupies with aluminum exclusively
the octahedral sites, which in turn produce the ferrimagnetic
moment.

2. Experimental details

Samples with nominal composition Al2−xFex O3 (x = 0.8, 0.9
and 1) were prepared by the standard solid state reaction
method using a stoichiometric mixture of Al2O3 and Fe2O3.
If the reaction takes place in air atmosphere we get as a final
product a mixture of Al2O3 and Fe2O3. The same occurs
if the heating occurs in oxygen atmosphere but for T <

1350 ◦C. Interestingly, in order to prepare the orthorhombic
form of the Al2−xFex O3 compound it is absolutely necessary
for the reaction to take place in a narrow temperature
window (1350–1395 ◦C) under pure oxygen atmosphere in
agreement with [6, 7]. X-ray powder diffraction (XRD) data
were collected with a D500 Siemens diffractometer, using
Cu Kα radiation. High-resolution synchrotron x-ray powder
diffraction (SXRD) patterns were collected with the multi-
detector powder diffractometer on the ID31 beamline at the
ESRF (Grenoble, France) in Debye–Scherrer (transmission)
configuration. Powder samples were sealed in thin-wall
borosilicate glass capillaries (d = 0.5 mm), inserted in a

Figure 1. Crystal structure of the orthorhombic Al2−x Fex O3

compound (space group Pna21). There are four cation and six
oxygen sites labeled Fe1–Fe4 and O1–O6, respectively. The Fe3 and
(Fe1, Fe2, Fe4) sites are tetrahedrally and octahedrally coordinated,
respectively. For low iron concentration Fe1 and Fe2 are commonly
occupied by aluminum and iron. For higher x iron is substituted for
aluminum at Fe4 sites. The Fe3 site is practically occupied by
aluminum. The polar axis of the structure is parallel with the c-axis.
The crystal structure can be considered as a layered structure
consisting of alternating cation layers of Fe1 and (Fe2, Fe4)
separated from oxygen layers. In the magnetically ordered state the
magnetic moments are parallel to the a-axis stacked in a + − +−
sequence along the c-axis.

continuous-flow cryostat and rotated during data collection.
Data were collected at selected temperatures between 5 and
300 K on both cooling and heating with wavelength λ =
0.500 08 Å, and were rebinned in the range 4◦–60◦ to a 0.003◦
step.

DC magnetization measurements were performed in a
superconducting quantum interference device (SQUID) mag-
netometer (Quantum Design). Ac-susceptibility measurements
were performed using a physical property measuring system
(PPMS, Quantum Design) equipped with ac-susceptibility
option. The absorption Mössbauer spectra (MS) were recorded
using a conventional constant acceleration spectrometer with
a 57Co (Rh) source moving at room temperature, while the
absorber was kept fixed in a variable temperature cryostat. The
resolution was determined to be �/2 = 0.14 mm s−1 using a
thin α-Fe foil.

3. X-ray diffraction data

The crystal structure of the orthorhombic Al2−x FexO3

compound has been deduced from the single crystal
crystallographic studies of Abrahams and co-workers in the
middle of the 1960s [26] on the isostructural Ga2−x FexO3

compound using the non-centrosymmetric space group Pna21.
In addition, the crystal structure of Ga2−xFex O3 has been
refined using neutron powder data at several temperatures in
the past by Bertaut et al [18] and recently by Arina et al
[23]. Crystal structure data of the Al2−xFex O3 compound are
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Figure 2. Rietveld plot of AlFeO3 compound sample at T = 295 K
measured with synchrotron x-rays (λ = 0.5 Å) at the ID31 beam line
of the ESRF. The observed data points are indicated by open circles,
while the calculated and difference patterns are shown by solid lines.
The positions of the reflections are indicated by vertical lines below
the patterns.

available only for the x = 1 sample originating from the crystal
structure refinement of Bouree et al [19], based on powder
neutron diffraction data. The asymmetry unit includes four
cation and six anion sites labeled Fe1, Fe2, Fe3 and Fe4 and
O1–O6, respectively. The crystal structure of Al2−x FexO3

can be considered as a layer structure consisting essentially
of three types of cation layers, stacked along the c-axis (see
figure 1). The first two layers, with small separation along the
c-axis (�z ∼ 0.08c), include the Fe3 sites (mainly occupied
by Al) and the Fe1 sites occupied by both Fe and Al ions. The
third layer concerns the Fe2 and Fe4 sites (�z ∼ 0.01c) also
occupied by both Al and Fe ions. The cations in one layer
form chains along the a-axis. The cation layers are separated
from layers occupied exclusively with oxygen, appropriately
arranged in order for the cation polyhedra of Fe1, Fe2 and Fe4
sites to be irregular (non-rigid) octahedra while those of Fe3
are nearly regular tetrahedra.

Our powder x-ray diffraction data at T = 300 K
were refined using the Rietveld refinement method, with the
FULLPROF suite of programs [27], assuming the orthorhombic
polar space group Pna21. As initial crystal structure model
we adopted the one reported by Bouree et al [19]. Since
Pna21 is a polar space group the z positional parameter
of the Fe3 site is kept at zero. Figures 2 and 3 show
the Rietveld plots of the Al2−x FexO3 (x = 1) sample at
T = 300 and 5 K arising from crystal structure refinement
of the powder synchrotron x-ray diffraction data measured at
ESRF. The lower panels of figures 2 and 3 show the complete
pattern, while the upper parts show a zoom in the range 4◦–
15◦. The background is accounted for by linear interpolation
between points without the Bragg’s peak contribution. As
peak shape function we selected the pseudo-Voigt (no 7)
function convoluted with the Finger, Cox and Jephcoat
function in order to account for the axial divergence [28]. The
dependence of the full width at half maximum (FWHM) of
the peak profiles on the scattering variable, 2θ , is given by

Figure 3. Rietveld plot of AlFeO3 compound at T = 5 K measured
with synchrotron x-rays (λ = 0.5 Å) at the ID31 beam line of the
ESRF. The observed data points are indicated by open circles, while
the calculated and difference patterns are shown by solid lines. The
positions of the reflections are indicated by vertical lines below
the patterns.

equation FWHM = √
U tan2 θ + V tan θ + W + X tan θ +

Y/ cos θ . Owing to the ultra-high resolution of the ID31
diffractometer we ascertained that the diffraction peaks are
characterized by selective peak broadening. Such a type
of broadening can be accounted for by using the formalism
developed by Stephens [29]. In this model the anisotropic
strain broadening effects are phenomenologically attributed
to a stochastic distribution of the metric parameter vector
α = (A, B, C, D, E, F), determining the inverse square
lattice plane spacing Mhkl = 1/d2

hkl = Ah2 + Bk2 +
Cl2 + Dkl + Ehl + Fhk. In the orthorhombic system
the variance σ 2(Mhkl ) can be expressed by six independent
parameters [29] (S400, S040, S004, S220, S202, S022) through the
relation σ 2(Mhkl ) = S400h4 + S040k4 + S004l4 + S220h2k2 +
S202h2l2 + S022k2l2, that can be estimated from the Rietveld
refinement. In order to simplify the refinement, we kept
the isotropic Gaussian U, V , W and Lorentzian X, Y FWHM
parameters zero, and we used the parameter ξ which ‘shares’
the anisotropic FWHM in the Gaussian H 2

G = (1 −
ξ)2 D2 tan2 θ and Lorentzian HL = ξ D tan θ parts, where
D2 = 10−88 ln 2(180/π)2σ 2(Mhkl )/M2

hkl . We must note that
the reliability factors have been reduced by approximately half
by introducing the Stephens’ formalism, in comparison to the
results obtained by isotropic line shape parameters.

At the first steps of the refinement we used as free
parameters the scale factor, unit cell constants and anisotropic
microstructure parameters defining the full width at the half
maximum (FWHM), and cation atomic positions Fe1, Fe2,
Fe3 and Fe4 sites are supposed to be occupied exclusively by
iron and aluminum, respectively. Having attained a reasonable
agreement, a close inspection of the low angle part of the
difference patterns revealed small diffraction peaks arising
from the rhombohedral form of the solid solution Al2−x FexO3

compound. Based on this, we employ a two phase refinement
model. Nevertheless, the amount of the secondary phases was
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Table 1. The structural parameters of Al2−x Fex O3 (x = 0.8, 0.9 and
1.0) at T = 295 K as determined from Rietveld refinement based on
x-ray diffraction data. The space group Pna21 (No 33) was used.
Numbers in parentheses are statistical errors referring to the last
significant digit. The results for the samples with x = 0.9 and 1.0
emanate from SXRD data.

Atom x y z B N

x = 0.8, a = 4.9650(1) Å, b = 8.5219(1) Å, c = 9.2131(1) Å

Fe1 0.1875(6) 0.1524(4) 0.581(4) 0.41(3) 0.63(1)/0.47(1)
Fe2 0.6688(4) 0.0323(2) 0.798(6) 0.41(3) 0.65(1)/0.35(1)
Fe3 0.1730(8) 0.1529(8) 0.000(0) 0.46(6) 0.0/1.0
Fe4 0.8195(7) 0.1597(3) 0.301(8) 0.50(6) 0.13(1)/0.87(1)
O1 0.987(2) 0.323(1) 0.416(1) 0.74(6) 1.0(0)
O2 0.505(1) 0.489(1) 0.426(1) 0.74(6) 1.0(0)
O3 0.655(2) 1.002(1) 0.200(1) 0.74(6) 1.0(0)
O4 0.151(2) 0.159(1) 0.192(1) 0.74(6) 1.0(0)
O5 0.839(2) 0.164(1) 0.669(1) 0.74(6) 1.0(0)
O6 0.504(2) 0.175(1) 0.940(1) 0.74(6) 1.0(0)

Rp = 5.8, Rwp = 8.1, Rexp = 4.91, RB = 3.2, χ2 = 2.7

x = 0.9, a = 4.9745(1) Å, b = 8.5393(2) Å, c = 9.2311(2) Å

Fe1 0.1833(5) 0.1509(4) 0.5820(4) 1.1(1) 0.66(1)/0.34(1)
Fe2 0.6704(4) 0.0322(2) 0.7990(6) 1.1(1) 0.64(1)/0.35(1)
Fe3 0.1718(7) 0.1537(7) 0.0 1.0(1) 0.03(1)/0.96(1)
Fe4 0.8158(5) 0.1609(3) 0.304(1) 0.6(8) 0.13(1)/0.86(1)
O1 0.9676(5) 0.3237(9) 0.421(1) 1.2(1) 1.0
O2 0.508(1) 0.4909(9) 0.431(1) 1.2(1) 1.0
O3 0.659(2) 1.0042(8) 0.199(1) 1.2(1) 1.0
O4 0.136(1) 0.1678(9) 0.195(1) 1.2(1) 1.0
O5 0.824(2) 0.1718(9) 0.670(1) 1.2(1) 1.0
O6 0.499(2) 0.172(1) 0.942(1) 1.2(1) 1.0

Rp = 12.4, Rwp = 16.4, Rexp = 12.2, RB = 3.6, χ2 = 1.8

x = 1, a = 4.9899(1) Å, b = 8.5670(1) Å, c = 9.2592(1) Å

Fe1 0.1847(2) 0.1513(1) 0.5808(1) 0.73(2) 0.684(4)/0.314(4)
Fe2 0.6709(1) 0.0328(1) 0.7975(2) 0.74(2) 0.673(3)/0.327(3)
Fe3 0.1728(3) 0.1542(2) 0.0 0.95(3) 0.053(2)/0.947(2)
Fe4 0.8156(2) 0.1605(1) 0.3042(2) 0.49(2) 0.183(3)/0.817(3)
O1 0.9824(6) 0.3236(3) 0.4211(4) 1.31(3) 1.0
O2 0.5058(5) 0.4917(3) 0.4290(3) 1.31(3) 1.0
O3 0.6581(6) 1.0037(3) 0.1992(4) 1.31(3) 1.0
O4 0.1448(6) 0.1648(3) 0.1941(3) 1.31(3) 1.0
O5 0.8332(7) 0.1683(3) 0.6716(4) 1.31(3) 1.0
O6 0.5020(7) 0.1714(4) 0.9429(4) 1.31(3) 1.0

Rp = 7.7, Rwp = 9.9, Rexp = 7.2, RB = 3.0, χ2 = 2.0

estimated as about 1 wt%. After a few refinement circles we
succeeded in obtaining a good agreement between theoretical
and experimental patterns. The agreement parameters were
further reduced when we left as free parameters the occupancy
of the octahedral coordinated sites. This fact is related directly
to the common occupancy of these sites by Fe and Al ions.

The agreement indices are further improved when the
oxygen positional parameters and all the isotropic thermal
parameters are incorporated into the refinement. The refined
cell constants, atomic coordinates, occupancy factors and
isotropic thermal parameters, and selected cation–oxygen
distances deduced from Rietveld refinement, are listed in
table 1 and table 2, respectively. The data for the x = 1
sample are in good agreement with those of Bouree et al [19].
At this point, we would like to comment on some interesting
points based on the results of tables 1 and 2. (a) The three

Table 2. Selected (Fe, Al–O) bond distances for Al2−x Fex O3

(x = 0.8, 0.9 and 1.0) as obtained from Rietveld refinements of x-ray
powder diffraction data at T = 295 K. Numbers in parentheses are
estimated statistical errors referring to the last significant digit.

x = 0.8 x = 0.9 x = 1.0

Fe1–O1 2.33(1) 2.35(1) 2.332(4)
Fe1–O1 2.13(1) 2.05(1) 2.117(4)
Fe1–O2 2.08(1) 2.04(1) 2.077(4)
Fe1–O3 1.87(1) 1.88(1) 1.884(3)
Fe1–O5 1.90(1) 1.97(1) 1.940(4)
Fe1–O5 1.91(1) 1.85(1) 1.912(3)

Fe2–O1 2.22(1) 2.21(1) 2.253(4)
Fe2–O2 2.03(1) 2.03(1) 2.052(3)
Fe2–O3 1.87(1) 1.90(1) 1.901(3)
Fe2–O4 2.10(1) 2.18(1) 2.147(3)
Fe2–O5 1.84(1) 1.84(5) 1.840(3)
Fe2–O6 1.96(1) 1.98(5) 1.987(4)

Fe3–O2 1.78(1) 1.77(1) 1.777(4)
Fe3–O4 1.77(1) 1.81(1) 1.790(3)
Fe3–O6 1.74(1) 1.71(5) 1.724(4)
Fe3–O6 1.77(1) 1.79(5) 1.795(4)

Fe4–O1 1.94(1) 1.91(1) 1.951(4)
Fe4–O1 1.96(1) 2.05(1) 1.989(3)
Fe4–O2 1.94(1) 1.99(1) 1.990(4)
Fe4–O3 1.82(1) 1.82(1) 1.834(3)
Fe4–O5 1.93(1) 1.88(1) 1.937(3)
Fe4–O5 2.01(1) 1.98(1) 2.013(3)

octahedral sites are occupied by both Fe3+ and Al3+ ions.
Within the estimated standard deviations the iron occupancy
in the tetrahedral site is practically zero, in agreement with the
Mössbauer data (see below). For the x = 0.8 sample Fe3+ ions
are distributed in octahedral Fe1 and Fe2 sites. As x increases,
the iron content of Fe1 and Fe2 sites further increases and
at the same time some iron starts to occupy the octahedral
Fe4 site. It is interesting to note that the estimation of the
iron occupancy, with Rietveld refinement, in the four available
sites can be achieved due to their significant structural factor
contrast. In spite of this significant contrast, the total iron
amount is lower than the nominal for all samples. This problem
may be related to the difficulty in estimating both temperature
and occupancy factors by the x-ray diffraction data. (b) The
coordination octahedra for both Fe1 and Fe2 sites are highly
distorted since the Fe–O bonds are as long as 2.33(1) Å and
2.22(1) Å respectively. The coordination polyhedron of the
Fe4 site is also not a rigid octahedron, but the difference
between lower and maximum bond lengths is significantly less
in comparison with those of Fe1 and Fe2 sites. Probably
this high anisotropic coordination is related to magnetoelectric
behavior. (c) The cell parameters increase with iron content, a
fact arising from the difference of the ionic radius of Fe3+ and
Al3+ (e.g. R(Fe+3) = 0.785 Å and R(Al+3) = 0.675 Å for
octahedral coordination [30]).

In order to examine whether the ferrimagnetic transition
induces some kind of structural change we study the crystal
structure of the x = 1 sample using high-resolution
synchrotron x-ray diffraction data from 300 K down to 5 K.
Figure 3 shows the Rietveld plot of the SXRD measured at
T = 5 K. The refinement results do not show any drastic
structural change, in comparison with structural data above

4
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Table 3. The structural parameters of AlFeO3 at T = 5 K as
determined from Rietveld refinement based on synchrotron x-ray
diffraction data of the ID31 beam line of the ESRF. The space group
Pna21 (No 33) was used. Numbers in parentheses are statistical
errors referring to the last significant digit.

a = 4.9832(1) Å, b = 8.5558(1) Å, c = 9.2491(1) Å

Atom x y z B N

Fe1 0.1844(2) 0.1518(2) 0.5815(2) 0.39(2) 0.66(1)/0.34(1)
Fe2 0.6715(2) 0.0321(1) 0.7984(2) 0.44(2) 0.67(1)/0.32(1)
Fe3 0.1733(3) 0.1539(3) 0.0000(0) 0.65(4) 0.06(1)/0.94(1)
Fe4 0.8143(2) 0.1609(1) 0.3043(3) 0.26(3) 0.18(1)/0.82(1)
O1 0.978(1) 0.3241(4) 0.4216(5) 1.06(3) 1.0
O2 0.507(1) 0.4910(4) 0.4311(4) 1.06(3) 1.0
O3 0.661(1) 1.0032(4) 0.1977(4) 1.06(3) 1.0
O4 0.144(1) 0.1646(4) 0.1956(4) 1.06(3) 1.0
O5 0.826(1) 0.1691(4) 0.6718(4) 1.06(3) 1.0
O6 0.500(1) 0.1726(4) 0.9440(4) 1.06(3) 1.0

Rp = 9.0, Rwp = 12.4, Rexp = 7.2, RB = 5.6, χ2 = 2.8

the ferrimagnetic temperature, except for the expected cell
constant contraction due to the lowering of the temperature.
The refined structural parameters deduced from SXRD data of
the x = 1 sample at T = 5 K are listed in table 3.

4. Magnetic measurements

Figure 4 shows the temperature variation of the magnetic
moment per gram (m) of the Al2−xFex O3 (x = 0.8, 0.9 and
1.0) samples. The size and the temperature variation of the
magnetic moment indicate a ferromagnetic component, while
the significant hysteresis of the measured moments during
cooling and heating implies strong magnetic anisotropy. The
measurements are taken after zero field cooling, applying
a 100 Oe dc field, during warming (zfc branch) up to
350 K and finally measuring during cooling down to 5 K (fc
branch). For the x = 0.8 sample, when the temperature
is raised, the magnetization shows an abrupt increase at
≈50 K. Subsequently it forms a double-peak structure and
then decreases, at the transition temperature, TN. The
corresponding fc branch increases smoothly as the temperature
decreases below TN. This strong difference between zfc
and fc branches is indicative of a ferrimagnetic/ferromagnetic
material with strong coercivity due to the strong uniaxial
anisotropic behavior (see below). When a small magnetic
field is applied at 5 K in a demagnetized sample, after zero
field cooling (the domains inside a crystallite are arranged
either parallel or antiparallel to the easy axis, which in turn
are randomly distributed at the surface of the unit sphere),
the magnetic moment parallel to the external magnetic field,
H is only a small percentage of the total saturated moment.
Only when the external field becomes comparable with the
effective anisotropic field, HA = μ0 M(T )/2K (T ), does
appreciable magnetic moment appear. On the other hand,
during the fc measurement, since the anisotropic field and
accordingly the coercive field are zero at TN, all the crystallites
with a-axis (the easy magnetic axis as we discuss below)
parallel to the external field contribute to the magnetic moment.
The magnetic measurements clearly reveal an increase of TN

Figure 4. Temperature variation of zfc and fc magnetic moment per
gram of Al2−x Fex O3 (x = 0.8, 0.9 and 1.0) samples. The inset shows
the concentration variation of the Néel temperature, TN. Arrows
indicate the Néel temperature defined at the temperature where
dm/dT displays a maximum.

Figure 5. Isothermal magnetization hysteresis loops at T = 5 K of
Al2−x Fex O3 (x = 0.8, 0.9 and 1.0) samples. The inset shows the
concentration variation of the coercive field and the remanent
ferromagnetic moment.

(defined at the temperature where |dm/dT | shows a peak) as
x increases. This increase is related to the increase of the iron
occupancy firstly in the Fe4 site and secondly in Fe1 and Fe2.

Figure 5 depicts parts of the hysteresis loops of the
Al2−x Fex O3 (x = 0.8, 0.9 and 1.0) sample at T = 5 K.
These measurements demonstrate clearly the dependences of
the remanent moment (increasing function) and coercive field
(decreasing function) on x , depicted in the inset of figure 5.
Similar to the behavior of TN, the increase of the remanent
moment is most probably connected with the occupancy of
iron in the Fe4 site. The simultaneous increase of the iron
content by the same amount, in the Fe1 and Fe2 sites, does not
contribute to the remanent moment because these sublattices
are coupled antiferromagnetically. Therefore, only when iron
is substituted for Al by different amounts in Fe1 and Fe2
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Figure 6. Magnetic field dependence of the magnetic moment at
several temperatures of the Al1.2Fe0.8O3 sample. Inset (a) shows a
zoom of the measurements at zero field region, while inset (b) shows
the temperature variation of the remanent moment and the coercive
field. In inset (b) the solid line through the mr data represents the
equation mr = m0(1 − T/TN)n (see the main text).

sites is a net ferromagnetic moment produced. The decrease
of the coercive field does not have a simple explanation. In
the earlier studies on the isostructural Ga2−x FexO3 compound
several reasons have been advocated to explain the origin of
the large magnetic anisotropy (HA ∼ 40–50 kOe) [12, 17].
Levine et al [12], based on classical dipole energy calculations,
explained satisfactorily the sign, magnitude, temperature and
iron concentration dependence of HA. On the other hand,
Schelleng et al [17] argued that in addition to the dipolar
interactions antisymmetric exchange and single-ion anisotropy
contribute significantly as well.

In order to study in more detail the magnetic behavior
of the orthorhombic samples we carry out isothermal
magnetization loops for temperatures in the interval 5 K–
300 K. Representative experimental results are shown in
figure 6 for the x = 0.8 sample. The virgin magnetic
moment firstly increases suddenly with the magnetic field for
H < 20 kOe and then asymptotically approaches a less abrupt
increment. The reverse part follows a different path, showing
a remanent magnetic moment 0.1 emu g−1 and zeroed at the
coercive field Hc ∼ 3 kOe. Taking into account similar
measurements in single crystal and powder samples [18] of
the isomorphous Ga1−x FexO3, we conclude that the particular
variation implies weak ferrimagnetic behavior with uniaxial
anisotropy. The neutron diffraction data have shown [18, 19]
that AlFeO3 and GaFeO3 adopt a collinear ferrimagnetic
structure with Fe3+ magnetic moments parallel and antiparallel
to the a-axis (Pna21 setting) of the unit cell, which also
is the easy magnetic axis. The remanent moment of our
powder sample is related to the a-axis remanent moment
mr = ∫ π/2

0 ma cos θ sin θ dθ = ma/2. Using this relation
we estimated the remanent moment along the a-axis, which
is depicted in inset (b) of figure 6. In the same inset plotted
is the temperature dependence of the coercive field. A least
square fitting of the mr(T ) data with a power law mr(T ) =
mr(0)(1 − T/TN)n yields an exponent n = 0.27 ± 0.01 and

Figure 7. Temperature variation of the real, χ ′(T ), and imaginary,
χ ′′(T ), parts of the ac susceptibility for the Al2−x Fex O3 samples
(a) x = 0.8, (b) x = 0.9 and (c) x = 1.0.

zero-temperature remanent moment 0.15 ± 0.01 μB/ion Fe3+.
Similar behavior has also been observed for the other samples.

Figures 7(a)–(c) show the temperature variation of the
external ac susceptibility (real, χ ′(T ), and imaginary, χ ′′(T ),
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ac susceptibility, uncorrected for demagnetizing effects)
measured under an ac magnetic field Hac = 10 Oe at
frequencies f = 11, 111, 1111 and 9111 Hz for x = 0.8, 0.9
and 1.0 samples, respectively. At T = 185, 210 and 260 K,
for x = 0.8, 0.9 and 1.0, χ ′(T ) displays a sharp peak.
The corresponding χ ′′(T ) exhibits a sharp maximum at the
temperature where χ ′(T ) takes the maximum value, with an
amplitude comparable to χ ′(T ). The size and the temperature
behavior of χ ′(T ) is different from those observed in
antiferromagnetic compounds. This behavior can be explained
quantitatively by considering the interaction magnetic energy
of the sample’s magnetic moment, M , with external magnetic
field, H , and uniaxial anisotropy term E(θM) = K sin2 θM −
μ0M H cos(θH − θM). Here K is the anisotropy constant, θM

is the angle of the magnetic moment with the easy axis, and
θH is the angle of the external field with the easy axis. When
the anisotropic field is significantly larger than the external
field H � HA the condition for minimum dEθM /dθM = 0
yields θM ≈ μ0 M(H/HA) sin2 θH . The measured magnetic
moment averaged over the surface of a sphere yields 〈M〉 ≈
(2/3)(H/HA)M , which subsequently yields the magnetic
susceptibility χ = d〈M〉/dH ∝ M(T )/HA(T ). Taking into
consideration the experimental observed temperature variation
of mr(T ) ∝ M(T ) and HA(T ) ∝ Hc(T ) we can explain very
well the rapid reduction of χ(T ) below TN. The divergence
of χ ′ above TN is related to the ferrimagnetic transition [31].
The large imaginary part around TN for a ferrimagnet has been
attributed by Skumryev et al [31] to the large domains arising
from the weak demagnetizing field, inherent to a ferrimagnetic
compound.

Finally, let us comment on the frequency dependence of
the ac susceptibility in the region of the transition temperature.
We can qualitatively understand this behavior supposing a
single relaxation time. In this case, the magnetization under an
external ac magnetic field should follow the equation dM/dt +
M/τ = χ0 Hac sin(ωt), where χ0 is the dc susceptibility.
Simple integration gives the frequency dependence of in and
out of phase fundamental susceptibility χ ′ = χ0/(1 + (ωτ)2)

and χ ′′ = χ0(ωτ)/(1 + (ωτ)2). In the regime ωτ > 1 both
χ ′ and χ ′′ decrease with ω. Our data can be explained with a
relaxation type behavior adopting a distribution of relaxation
times.

5. Mössbauer spectra

Figure 8 shows the Mössbauer absorption spectra (MS) of
the Al2−x FexO3 compound for x = 0.8, 0.9 and 1.0 at
295 K consisting of two broad non-Lorentzian asymmetric
peaks. The Mössbauer spectra do not exhibit a well resolved
structure so as to allow for an unambiguous assignment
to the crystallographic sites. Nevertheless, their intensity
asymmetry, the larger line width (in comparison with a thin
α-Fe absorber) and some details in the line shape prompted us
that they can be modeled with three components. According
to the crystal structure model for the cations there are four
different crystallographic sites, three with cations in a distorted
octahedral environment and one in a nearly regular tetrahedral
environment. According to our crystal structure refinements

Figure 8. Mössbauer spectra of the the Al2−x Fex O3 (x = 0.8, 0.9
and 1) sample at T = 295 K fitted with three quadrupole doublets
denoted S1, S2 and S3, respectively.

there is no doubt that they are occupied by both iron and
aluminum. For the tetrahedral site the crystallographic data
cannot give an explicit answer. For x = 0.8 we found
that iron occupancy at Fe1, Fe2 and Fe4 sites is 40%, 50%
and 10%, respectively. As the iron content increases a part
of the extra iron is equally distributed in Fe1 and Fe2 sites
and the rest goes in the Fe4 site. Therefore, it is plausible
that the paramagnetic Mössbauer spectra should consist of,
at least, three paramagnetic doublets. Because our data do
not show clearly the existence of different components for
their analysis, we should impose certain restrictions in order
for the fitting to give a reasonable result. By keeping the
HWHM of the absorption lines equal with that estimated
from a standard α-Fe absorber (�/2 = 0.16 mm s−1) and
by employing the Le Caer [32] method, we estimated the
distribution of the quadrupole splitting. This distribution
revealed that the experimental spectra can be decomposed with
three nested quadrupole doublets with quadrupole splitting
�1 ≈ 0.4 mm s−1, �2 ≈ 0.7 mm s−1 and �3 ≈ 1.1 mm s−1.
Subsequently, using this information we refined the hyperfine
parameters by employing a three component fit with free
parameters of their isomer shifts, quadrupole splittings and
relative areas. The half widths at half maximum for all
components are kept constant, �/2 = 0.16 mm s−1. The
three components used to fit the MS and the total theoretically
calculated spectra are shown in figure 8 with solid lines. The
final hyperfine parameters estimated with least square fitting
are listed in table 4. We should note that the MS spectra can
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Table 4. Hyperfine parameters of the Mössbauer paramagnetic
spectra of the Al1−x Fex O3 (x = 0.8, 0.9 and 1.0) compound,
obtained from least squares fits of the Mössbauer spectra at
T = 295 K. �/2 is the half line width in mm s−1, δ is the isomer
shift relative to metallic Fe at RT in mm s−1,
�EQ = (1/2)|e|Vzz Q(1 + η2/3)1/2 is the quadrupole splitting and
W% the relative spectra area of each doublet. The numbers in
parentheses are estimated standard deviations referring to the last
significant digit.

δ �EQ �/2 W%

x = 0.8, χ2 = 1.2

S1 0.297(1) 0.470(2) 0.16 44(1)
S2 0.302(1) 0.778(1) 0.16 45(2)
S3 0.291(3) 1.158(6) 0.16 11(1)

x = 0.9, χ2 = 5.5

S1 0.328(1) 0.428(1) 0.16 38(1)
S2 0.335(1) 0.792(1) 0.16 44(1)
S3 0.327(1) 1.188(5) 0.16 18(1)

x = 1.0, χ2 = 6.5

S1 0.339(1) 0.440(1) 0.16 40(1)
S2 0.338(1) 1.002(1) 0.16 41(1)
S3 0.330(1) 1.352(1) 0.16 19(1)

also be fitted with two doublets, using higher �/2 or crossed
doublets with quite different isomer shifts. However, the higher
χ2, in comparison with the three doublet model and the lack
of correspondence to crystallographic data, led us to reject this
model. The values of the estimated isomer shift for all doublets
indicate that the iron is in the Fe3+ valence state. Based on
the data listed in table 4, it is reasonable to attribute the S1

and S2 components to iron occupying the Fe1 and Fe2 sites,
while S3 to Fe4. The particular assignment is based on the
correlation of the relative abundance of Si with iron occupancy
estimated from Rietveld refinements. It is expected that the
two components arising from Fe1 and Fe2 sites have nearly
equal areas, while the spectrum area of iron from the Fe4 site
increases with x .

At this point we would like to note that our MS show
that iron does not occupy the Fe3, tetrahedral site. This is an
important experimental conclusion that can only be arrived at
with the help of the Mössbauer spectroscopy. In the literature,
it is well known that high spin trivalent iron, in a tetrahedral
oxygen environment, has significantly lower isomer shift with
respect to the octahedral one, due to the higher covalency
bonding. For example, in iron substituted β-Ga2O3 at room
temperature the MS consist of two paramagnetic doublets [11]
with different isomer shifts (δT ≈ 0.17 mm s−1 and δO ≈
0.35 mm s−1) attributed to iron occupying the tetrahedral
and octahedral sites of β-Ga2O3, respectively. Similarly, in
yttrium iron garnet Y3Fe5O12, where tetrahedral and octahedral
sites exist, the isomer shift of tetrahedral iron is lower than
that of the octahedral [33]. Consequently, the absence of
any paramagnetic component with low isomer shift led us to
conclude that iron does not occupy the tetrahedral Fe3 sites.
In order to support further our site assignment, we performed
theoretical calculations of the quadrupole spitting for sites
Fe1, Fe2 and Fe4, employing the point charge approximation

using our refined crystal structure data. For the Fei sites
we assumed that they are occupied by point charge with
charge 3|qe|. This is a good approximation, at least for high
spin ferric iron ions, since the spherical symmetry of the
6S ground state is preserved inside the crystal field, zeroing
then the valence contribution in the electric field gradient
tensor. Performing lattice sums inside a 100a × 100b × 100c
parallelepiped, we calculated the electric field gradient tensor
and subsequently the quadrupole splitting using the relation
�EQ = (1/2)q2

e Q(1 − γ )|Vzz |(1 + η2/3)1/2. γ = −9.1
is the Sternheimer antishielding factor [34] of Fe, Vzz is the
maximum eigenvalue of the Vi j , η = (Vyy − Vxx )/Vzz is the
asymmetry parameter, Q = 0.21×10−24 cm2 is the quadrupole
moment [35] of 57Fe and qe is the charge of a proton. We
should note that Q values range within 0.08–0.21 b. Q = 0.21
b is preferred, and its use would approximately double the
predicted � with respect to Q = 0.08 b. The theoretically
estimated quadrupole splittings for the compound x = 1 are
�(Fe1) = 0.27 mm s−1, η = 0.75�(Fe2) = 0.46 mm s−1,
η = 0.46, and �(Fe3) = 0.57 mm s−1, η = 0.47. These
values differ from the observed ones by a factor of two, but we
can consider them as an indication that we have analyzed the
spectra correctly.

Room temperature Mössbauer spectra for Al2−x FexO3

and isostructural Ga2−xFex O3 compounds have been reported
in the past by several groups [9–11, 13, 18]. In the
case of Ga2−xFex O3 (x = 0.8) two doublets have been
observed [11, 13, 18] with nearly equal isomer shifts (δ ≈
0.35 mm s−1 relative to α-iron at room temperature) and
�EQ ≈ 0.49 mm s−1, and �EQ ≈ 1.05 mm s−1 for the
more intense and less intense, respectively. These authors
have attributed the doublet with lower �EQ to octahedral
Fe3+, while that with higher �EQ to Fe3+, which occupies
the tetrahedral sites. For Al2−xFex O3 Mössbauer spectra have
been reported only for the x = 1 sample [10], in good
agreement with our results.

Figures 9–11 show the temperature evolution of the MS
for all samples. As the temperature becomes lower than
the Néel temperature (estimated from magnetization or ac-
susceptibility data), the MS exhibit magnetic splitting due to
non-zero hyperfine magnetic field originating from long range
ferrimagnetic order. We should note that the MS in the close
vicinity of the Néel temperature display a mixed structure
consisting of paramagnetic and magnetically split sub-spectra.
This situation is quite common in magnetic oxides when the
magnetic sites are commonly occupied by two or more ions.

Let us discuss the T = 4.2 K spectra. We attempted to
fit these spectra using one magnetic component. The main
features of the spectra could be reproduced with hyperfine
parameters δ = 0.468(4) mm s−1, H = 473 kOe and
ε = (3/2)(3 cos2 � − 1 + η sin2 � cos 2�)e2 Q/12 =
−0.099(1) mm s−1. However, characteristic discrepancies
between the experimental and theoretical spectra were
observed, indicating that this simplistic model could not
account for the observations. On the other hand, it is obvious
that the observed spectrum does not have the appropriate
resolution in order to discern three distinct components
(sextets), in accordance with the paramagnetic and crystal
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Figure 9. Mössbauer spectra of the Al1.2Fe0.8O3 sample at several
temperatures. The symbols represent the experimental spectra. Lines
through symbols are theoretical spectra calculated with the Le Caer
method.

structure data. The broad character of the absorption lines
does not allow an unbiased analysis with several sites, therefore
we decided to use the Le Caer method in fitting the magnetic
spectra. With Le Caer’s method we can deconvolute a
magnetically split Mössbauer spectrum, supposing that it is
the result of the convolution with a hyperfine field distribution.
If the iron ions occupy crystallographic sites without static or
dynamic disorder the distribution of the hyperfine field should
be narrow peaks. In our case diamagnetic Al atoms occupying
together with iron the three octahedral sites produce large static
fluctuations in the hyperfine fields, hence giving rise to broad
distributions of the hyperfine magnetic field.

Figures 12–14 show the hyperfine field distributions as
estimated by the Le Caer method. The particular analysis
has been based on the following simplified assumptions. We
supposed that all the magnetic components have the same
isomer shift (depending on temperature) and a temperature
independent quadrupole splitting (ε ≈ −0.11 mm s−1). In
the insets of figures 12–14 we depict the temperature variation
of the most probable hyperfine field (Hp located at the
maximum of the P(Hhyp)) the max value and the lower limit
of the hyperfine field distribution. Hp follows the power
law Hp = H0(1 − T/TN)n . The solid lines through the
experimental points represent least square fittings yielding
the parameters H0 = 495 kOe and n = 0.27 ± 0.01
for all samples. The particular temperature dependence is
related to the second order ferrimagnetic to paramagnetic phase
transition, in agreement with our magnetic measurements.

Figure 10. Mössbauer spectra of the Al1.1Fe0.9O3 sample at several
temperatures. The symbols represent the experimental spectra. Lines
through symbols are theoretical spectra calculated with the Le Caer
method.

Figure 11. Mössbauer spectra of the AlFeO3 sample at several
temperatures. The symbols represent the experimental spectra.
Lines through symbols are theoretical spectra calculated with the
Le Caer method.
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Figure 12. Hyperfine field distributions for the Al1.2Fe0.8O3 sample,
estimated with the Le Caer method. The inset shows the temperature
dependence of the most probable field and the upper and lower
bounds of the hyperfine field distribution. The dotted lines are
guides to the eye. The solid line represents the equation
Hp(T ) = H0(1 − T/TN)n (see the text).

Having estimated the hyperfine magnetic field distribution
we are able to comment on several interesting issues. The
first concerns the value of Hp ∼ 490 kOe at 4.2 K
in comparison with that observed in rare earth perovskite
orthoferrites (≈550 kOe), where each octahedrally coordinated
Fe3+ is antiferromagnetically coupled with the six nearest
Fe3+ neighbors through an oxygen anion. In a sample in
a magnetically ordered state, the magnetic hyperfine field
Hhf(T ) measured via the line splitting in Mössbauer spectra
is equal to the difference of the ‘up’ and ‘down’ spin densities
at the nucleus Hhf = �↑

s − �↓
s [36]. Sawatzky et al [36] have

shown that the hyperfine magnetic field is given by

Hhf(T ) = HFree + HCOV + HSTHF.

The three terms correspond to free ion (Free), covalence
correction (COV) and supertransferred hyperfine field (STHF)
contributions, respectively. A large number of studies indicate
that the free ion and covalence contribution to hyperfine field
is HFREE + HCOV ≈ −450̂S kOe. Here Ŝ is the unit vector
along the thermal average electronic spin. In the STHF only
the magnetic nearest neighbor cations HSTHF = ∑

Bn Ŝ (the
sum concerns only magnetic nearest neighbors) contribute.
The constants Bn are positive scalar quantities, associated
with the nearest neighbor bond lengths and angles, and can
be expressed as a function of the Fe–O–Fe bond angles θn ,
through the relation Bn = Hπ + (Hσ − Hπ) cos2 θn [33, 36].

Figure 13. Hyperfine field distributions for the Al1.1Fe0.9O3 sample,
estimated with the Le Caer method. The inset shows the temperature
dependence of the most probable field and the upper and lower
bounds of the hyperfine field distribution. The dotted lines are guides
to the eye. The solid line represents the equation
Hp(T ) = H0(1 − T/TN)n (see the text).

In this equation the parameters Hπ,σ represent quantitatively
the ‘overlap distortions of the Fe cation s orbitals caused by
the ligand p orbitals having been unpaired by spin transfer
via π and σ bonds into unoccupied 3d orbitals on the NN
cations n’ [33, 36]. As it has been pointed out [33], especially
in amorphous yttrium garnets, the width of the hyperfine
field distribution is directly related to the STHF through the
distribution of the Bn parameters. In our case the fluctuating
part in the hyperfine field arises from the STHF due to the
stochastic nature of the nearest neighbors (magnetic Fe, non-
magnetic Al). Taking into account the nearest neighbors’
bond angles and the magnetic structure (see figure 1), the
values of the STHF can explain the low values of the magnetic
hyperfine field at 5 K. Theoretical calculations of Sawatzky
et al [33, 36] have shown that Bn can take values as high
as Bn ≈ −20 kOe. A ferromagnetic (antiferromagnetic)
Fe–O–Fe bond produces a positive(negative) supertransferred
field, respectively. In the Al2−x FexO3 compound we need
to take into consideration only the strong antiferromagnetic
superexchange interactions which concern only iron ions
occupying Fe1, Fe2 and Fe4 sites, especially the strong ∼180◦
Fe1–O–Fe2 and Fe1–O–Fe4 superexchange antiferromagnetic
interactions. The coupling inside Fe1 and (Fe2, Fe4) layers is
ferromagnetic with a bond angle near 90◦, leading to negligible
STHF. Obviously, the STHF is zero also when an iron ion is
connected with an aluminum ion. Consequently, on average,
the mean supertransferred field should be directly related to
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Figure 14. Hyperfine field distributions for the AlFeO3 sample,
estimated with the Le Caer method. The inset shows the temperature
dependence of the most probable field and the upper and lower
bounds of the hyperfine field distribution. The dotted lines are guides
to the eye. The solid line represents the equation
Hp(T ) = H0(1 − T/TN)n (see the text).

the probability that both cations in a ∼180◦ Fe1–O–(Fe2, Fe4)
bond are Fe3+. When both ions are Fe3+ ions one expects the
maximum HSHF HSTHF = 2 × 20 kOe, which in turn gives
a total hyperfine field Hhf(T ) ≈ 490 kOe, in good agreement
with the experimental results.

Finally, let us comment on the temperature dependence of
the hyperfine field distributions. At zero temperature the width
of the distributions is narrow and the existing width should
be accounted for by the fluctuations due to the STHM field
induced by the presence of the non-magnetic aluminum. Our
experimentally estimated hyperfine field distributions show
a strong temperature dependence as temperature increases.
Essentially, for T > TN/2 the hyperfine field measured at the
iron nucleus takes values from zero up to the value expected
for a typical variation of the iron spin in a magnetically
ordered state. As the temperature increases, the iron magnetic
moment loses the site ‘identity’. The particular behavior
has been observed in several studies related to the magnetic
system where the magnetic site is occupied from several
magnetic and/or non-magnetic ions. In a typical ferromagnetic
or antiferromagnetic compound, one expects a power law
variation of the hyperfine magnetic field H ∼ (1 − T/Tc)

n ,
with roughly temperature independent line width (implying a
delta type distribution of the Hhyp). For this kind of compound
the fluctuations of the electronic spins are related to spin wave
excitations, which, however, are too fast in comparison with
the Larmor frequency, averaged on the scale of the Larmor

period. These types of fluctuations reduce the mean value of
the electronic spin. It is interesting to note that the neutron
diffraction data of Bouree [19] and Bertaut [18] clearly show
a long range order of the iron magnetic moment. Therefore, it
is reasonable to ask why we observe this strange temperature
variation of the hyperfine field distributions. The particular
behavior can be explained considering the localized excitation
of the magnetic moments produced by the presence of the non-
magnetic aluminum. In a disordered system, except the spin
wave excitations, there are localized excitations that concern
change of the spin states with local character confined in the
region of few sites. These types of excitation in combination
with the extended ones produce this complicated behavior.

In conclusion, we have studied the Al2−xFex O3 (x =
0.8, 0.9 and 1) compound by using x-ray diffraction,
magnetization and Mössbauer spectroscopy techniques. The
magnetic measurements show magnetic transitions at TN =
180, 210 and 260 K for x = 0.8, 0.9 and 1.0 respectively, that
can be attributed to a transition from the ferrimagnetic to the
paramagnetic state. The paramagnetic Mössbauer spectra can
be analyzed by three quadrupole doublets associated with the
octahedral Fe1, Fe2 and Fe4 sites. The values of the hyperfine
parameters show that iron ions are in the Fe3+ high spin
state. The spectrum area of the doublet with larger quadrupole
splitting increases with x , and in combination with the x-ray
diffraction result, it is attributed to the iron which occupies
the Fe4 site. The magnetically split spectra at T = 4.2 K
consist of a six line spectrum with broad lines, indicative
for a distribution of the hyperfine magnetic field P(Hhyp).
Analysis of crystallographic data, magnetic measurements and
Mössbauer results revealed that the magnetic properties of
Al2−x Fex O3 are influenced by both the iron occupancies in Fe4
and (Fe1, Fe2) sites.
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